Решение. Искомое число способов равно числу перестановок из 5 элементов (книг), т. е. = 5! = 1•2•3•4•5 = 120.
2. Сколько «слов» по две буквы можно составить из букв a, b, c, d, e, таким образом, чтобы буквы в «словах» не повторялись?
Решение. Т.к. каждое «слово» должно содержать две буквы, то искомое число способов равно числу размещений из 5 элементов (букв) по две, т. е. .
3. Сколькими способами можно выбрать 1 красную гвоздику и 2 розовых из вазы, в которой стоят 10 красных и 4 розовых гвоздики?
Решение. Так как порядок выбора цветов не имеет значения, то красную гвоздику можно выбрать способами. Выбрать две розовые гвоздики из имеющихся четырех можно способами. По¬этому букет из одной красной и двух розовых гвоздик можно составить, по правилу умножения, способами.
4. Набирая номер телефона, абонент забыл последние 3 цифры, и помня лишь, что эти цифры различны, набрал их наугад. Найти вероятность того, что номер телефона набран правильно.
Решение. Благоприятствующий исход здесь один – правильный набор последних цифр . Всех возможных исходов здесь будет столько, сколько можно составить комбинаций из 3 цифр, порядок которых имеет значение, значит . Значит вероятность того, что номер набран правильно (событие ): .
.... вот и решения!!!